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Abstract
I calculate the modes of vibration of membranes of arbitrary shape using a
collocation approach based on little sinc functions. The matrix representation
of the PDE obtained using this method is explicit and does not require the
calculation of integrals. To illustrate the virtues of this approach, I have
considered a large number of examples, part of them are taken from the
literature, and part of them new. When possible, I have tested the accuracy
of these results by comparing them with the exact results (when available)
or with results from the literature. In particular, in the case of the L-shaped
membrane, the first example discussed in the paper, I show that it is possible to
extrapolate the results obtained with different grid sizes to obtain highly precise
results. Finally, I also show that the present collocation technique can be easily
combined with conformal mapping to provide numerical approximations to the
energies which quite rapidly converge to the exact results.

PACS numbers: 03.30.+p, 03.65.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper considers the problem of solving the Helmholtz equation

−�ψ(x, y) = Eψ(x, y) (1)

over a two-dimensional domain, B, of arbitrary shape, assuming Dirichlet boundary conditions
over the border, ∂B. Physically, this equation describes the classical vibration of a
homogeneous membrane or the behaviour of a particle confined in a region with infinite
walls in quantum mechanics. Unfortunately exact solutions to this equation are available only
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in few cases, such as for a rectangular or a circular membrane, where they can be expressed
in terms of trigonometric and Bessel functions, respectively [1]. In the majority of cases, in
fact, only numerical approaches can be used: some of these approaches are discussed, for
example, in a beautiful paper by Kuttler and Sigillito [2]. The purpose of the present paper
is to introduce a different approach to the numerical solution of the Helmholtz equation (both
homogeneous and inhomogeneous) and illustrate its strength and flexibility by applying it to
a large number of examples.

The paper is organized as follows: in section 2, I describe the method and discuss
its application to the classical problem of a L-shaped membrane; in section 3, I consider
an homogeneous membrane, with the shape of Africa and calculate few states; in
section 4, I consider two inequivalent membranes, which are known to be isospectral, obtaining
a numerical indication of isospectrality; in section 5, I study an example of irregular drum;
in section 6, the method is applied to study the emergence of bound states in a configuration
of wires of negligible transverse dimension, in the presence of crossings; in section 7, I show
that even more precise results can be achieved by combining the collocation method with a
conformal mapping of the boundary. Finally, in section 8, I draw my conclusions.

2. The method

The method that I propose in this paper uses a particular set of functions, the little sinc functions
(LSF) of [13, 14], to obtain a discretization of a finite region of the two-dimensional plane.
These functions have been used with success in the numerical solution of the Schrödinger
equation in one dimension, both for problems restricted to finite intervals and for problems
on the real line. In particular, it has been proved that exponential convergence to the exact
solution can be reached when variational considerations are made (see [13, 14]).

Although [13] contains a detailed discussion of the LSF, I will briefly review here the
main properties, which will be useful in the paper. Throughout the paper, I will follow the
notation of [13].

A little sinc function is obtained as an approximate representation of the Dirac delta
function in terms of the wavefunctions of a particle in a box (being 2L the size of the box).
Straightforward algebra leads to the expression

sk(h,N, x) ≡ 1

2N

{
sin((2N + 1)χ−(x))

sin χ−(x)
− cos((2N + 1)χ+(x))

cos χ+(x)

}
, (2)

where χ±(x) ≡ π
2Nh

(x ± kh). An alternative expression for these functions in terms of
Chebyshev polynomials reads [14]

sk(h,N, x) ≡ 1

2N
{U2N [cos χ−(x)] − U2N [sin χ+(x)]}. (3)

The index k takes the integer values between −N/2 + 1 and N/2 − 1 (N being an even
integer). The LSF corresponding to a specific value of k is peaked at xk = 2Lk/N = kh, h

being the grid spacing and 2L the total extension of the interval where the function is defined.
By direct inspection of equation (2) it is found that sk(h,N, xj ) = δkj , showing that the LSF
takes its maximum value at the kth grid point and vanishes on the remaining points of the grid.

It can be easily proved that the different LSF corresponding to the same set are orthogonal
[13]: ∫ L

−L

sk(h,N, x)sj (h,N, x) dx = hδkj (4)

2
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and that a function defined on x ∈ (−L,L) may be approximated as

f (x) ≈
N/2−1∑

k=−N/2+1

f (xk)sk(h,N, x). (5)

This formula can be applied to obtain a representation of the derivative of a LSF in terms
of the set of LSF as
dsk(h,N, x)

dx
≈

∑
j

dsk(h,N, x)

dx

∣∣∣∣
x=xj

sj (h,N, x) ≡
∑

j

c
(1)
kj sj (h,N, x),

d2sk(h,N, x)

dx2
≈

∑
j

d2sk(h,N, x)

dx2

∣∣∣∣
x=xj

sj (h,N, x) ≡
∑

j

c
(2)
kj sj (h,N, x),

(6)

where the expressions for the coefficients c
(r)
kj can be found in [13]. Although equation (5)

is approximate and the LSF strictly speaking do not form a basis, the error made with this
approximation decreases with N and tends to zero as N tends to infinity, as shown in [13].
For this reason, the effect of this approximation is essentially to replace the continuum of an
interval of size 2L on the real line with a discrete set of N − 1 points, xk , uniformly spaced on
this interval.

Clearly these relations are easily generalized to functions of two or more variables.
Since the focus of this paper is on two-dimensional membranes, I will briefly discuss how
the LSF are used to discretize a region of the plane; the extension to higher dimensional
spaces is straightforward. A function of two variables can be approximated in terms of
(Nx − 1) × (Ny − 1) functions, corresponding to the direct product of the Nx − 1 and Ny −
1 LSF in the x- and y-axis: each term in this set corresponds to a specific point on a rectangular
grid with spacings hx and hy (in this paper, I use a square grid with Nx = Ny = N and
Lx = Ly = L).

Since (k, k′) identifies a unique point on the grid, I can select this point using a single
index

K ≡ k′ +
N

2
+ (N − 1)

(
k +

N

2
− 1

)
(7)

which can take the values 1 � K � (N − 1)2. I can also invert this relation and write

k = 1 − N/2 +

[
K

N − 1 + ε

]
, (8)

k′ = K − N/2 − (N − 1)

[
K

N − 1 + ε

]
, (9)

where [a] is the integer part of a real number a and ε → 0.
As a natural extension of the results presented in [13, 14], I can consider the Schrödinger

equation in two dimensions

Ĥψn(x, y) ≡ [−� + V (x, y)]ψn(x, y) = Enψn(x, y) (10)

using the convention of assuming a particle of mass m = 1/2 and setting h̄ = 1. The Helmholtz
equation, which describes the vibration of a membrane, is a special case of (10), corresponding
to having V (x, y) = 0 inside the region B where the membrane lies and V (x, y) = ∞ on the
border ∂B and outside the membrane.

The discretization of equation (10) proceeds in a simple way using the properties discussed
in equations (5) and (6):

Hkk′,jj ′ = −[
c
(2)
kj δk′j ′ + δkj c

(2)
k′j ′

]
+ δkj δk′j ′V (xk, yk′), (11)

3
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Figure 1. L-shaped membrane. The dots are the collocation points corresponding to N = 10.

where k, j, k′, j ′ take the values −N/2 + 1, . . . , N/2 − 1. Note that the potential part of
the Hamiltonian is obtained by simply ‘collocating’ the potential V (x, y) on the grid, an
operation with a limited computational price. The result shown in (11) corresponds to the
matrix element of the Hamiltonian operator Ĥ between two grid points, (k, k′) and (j, j ′),
which can be selected using two integer values K and J , as shown in (7).

Following this procedure, the solution of the Schrödinger (Helmholtz) equation on the
uniform grid generated by the LSF corresponds to the diagonalization of a (N −1)2 ×(N −1)2

square matrix, whose elements are given by equation (11).
I will now use a specific problem, the vibration of a L-shaped membrane, represented

in figure 1, to illustrate the method, and discuss different implementations of the method
itself. This problem has been widely used in the past to test the performance of the different
numerical methods (see, for example [2–5, 7–11]) and is therefore a useful tool to assess the
strength of the present approach. Because of the reentrant corner, corresponding to the angle
θ = 3π/2 located at (0, 0), the derivatives of ψ(x, y) in the radial direction are unbounded
(see [3]).

Reid and Walsh [3] obtained a numerical approximation for the two lowest modes of this
membrane using finite differences and a conformal map which eliminates the reentrant corner
(see figure 5 of [3]); a more precise result was later obtained by Fox, Henrici and Moler who
used the method of particular solutions (MPS) in [4] exploiting the symmetries of the problem
(the reader may find a detailed discussion of the symmetries for this problem in [2]): the first
eight digits of the lowest eigenvalue reported by the authors are correct. Mason has obtained
numerical estimates for the first few modes of the L-shaped membrane in terms of a two-
dimensional Chebyshev series [5]. Milsted and Hutchinson [6] have obtained finite element

4
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solutions to this problem. Sideridis [7] used a conformal mapping of the L-shaped region
onto a square and then solved the resulting equation on a uniform rectangular mesh, obtaining
the first four digits of the lowest mode. Schiff [8] has calculated the first 15 lowest modes of
this membrane using finite elements, with a refined grid covering the region surrounding the
reentrant corner.

More recently, Platte and Driscoll have solved the boundary value problem on the L-shaped
membrane using radial basis functions [9]. Finally, Betcke and Trefethen have revisited the
MPS in [10]; in that paper, they have observed that the MPS reaches a minimal error for
a certain value of N (the number of collocation points on each of the sides non-adjacent to
the corner where the expansion is performed) but then it starts to grow as N increases. The
modified version of the method discussed in [10], which samples the Fourier–Bessel functions
also in the interior points, corrects this problem and provides a convergent behaviour for the
error. In this way, Betcke and Trefethen were able to obtain the first 14 digits of the lowest
eigenvalue of the L-shaped membrane, E1 ≈ 9.639 723 844 0219. I will use this precise result
to test the accuracy of our method. Reference [11] contains precise estimates for some higher
excited states of the L-shaped membrane.

I will now apply the LSF to the numerical solution of this problem: looking at figure 1,
I consider the grid points which are internal to the membrane and which do not fall on the
border. For a fixed N there is a total of 3/4N2 −2N +1 points; the grid represented in the figure
corresponds to N = 10 and therefore to a total of 56 internal points. In this case the collocation
of the Hamiltonian on the uniform grid generated by the LSF leads to a 56 × 56 matrix, which
can then be diagonalized. The eigenvalues of this matrix provide the lowest 56 modes of the
membrane, while the eigenvectors provide the lowest 56 wavefunctions. Alternatively I can
pick all the points of the grid internal to the membrane, including those falling on the border:
in such a case a total of 3/4N2 − N points are found, corresponding to a total of 65 points in
the case of the figure.

Table 1 contains the first 108 eigenvalues of the L-shaped membrane calculated using a
grid with N = 60 and selecting the grid points according to the prescriptions just explained. I
have used the notation E(±)

n for the energy of the nth state when the collocation points on the
border are either rejected

(
E(+)

n

)
or kept

(
E(−)

n

)
. The notation (±) is used since the two sets

approach the exact results either from above (+) or from below (−), as one can see comparing
these numbers with the precise results contained in [10, 11]. The reader will certainly note
that the results of table 1 contain rather large errors: in the case of the fundamental state,
for example, one has an error of about 1% from E(+)

n and a much larger error of almost
5% for E(−)

n .
The left panel of figure 2 shows the eigenvalues E(+)

n (solid line) and E(−)
n (dashed line)

for the L-shaped membrane corresponding to a grid with N = 60. The reader may note that
the higher end of the spectrum displays a curvature, contrary to the behaviour predicted by
Weyl’s law, i.e. 〈N〉 ∝ E for large energies. It is easy to show that such effect is artificial:
consider, for example, the case of a particle confined in a unit square, whose energies are
given by Enx,ny

= (
n2

x + n2
y

)
π2. The diagonalization of the Hamiltonian (11) for this problem

would provide the energies corresponding to the (N −1)2 states obtained taking the first N −1
values of nx and ny . This means that for energies higher than EN = [N2 − 2N + 2]π2

the method will provide only the eigenvalues contained inside a square of side N − 1
(in the (nx, ny) plane), up to a maximal energy EMAX = 2[N2 − 2N + 2]π2. For this
reason, the states above EN are incomplete and should not be taken into account for inferring
the asymptotic behaviour of 〈N〉. The right panel of figure 2 displays the asymmetry defined
as An = 2

(
E(+)

n − E(−)
n

)/(
E(+)

n + E(−)
n

)
for the same grid: this quantity provides an upper

estimate for the error.

5
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Table 1. First 108 eigenvalues of the L-shaped membrane calculated with a grid with N = 60.

n E
(−)
n E

(+)
n n E

(−)
n E

(+)
n n E

(−)
n E

(+)
n

1 9.177164983 9.725740015 37 178.4844965 184.8421046 73 343.7275747 361.2225873
2 14.78073926 15.25792488 38 193.8672234 197.9262249 74 344.9934435 361.9427155
3 19.37069304 19.79218759 39 193.8814147 197.9267047 75 358.2837562 366.3264978
4 29.22316338 29.5638567 40 198.1817051 201.9430968 76 359.5348189 366.3670805
5 30.96354609 32.09126661 41 201.4624222 208.1352708 77 364.75956 370.6707929
6 40.02046425 41.71342235 42 208.0809373 208.8812769 78 365.5537093 373.5349023
7 43.35567534 45.16667725 43 208.3091478 209.9202486 79 367.4408345 377.7859531
8 48.49170563 49.48205954 44 218.9529607 223.795143 80 371.1572423 384.5448247
9 48.50129154 49.48210584 45 219.7977882 224.2020086 81 380.3860374 390.8564172

10 55.00253452 56.99285853 46 230.4881589 237.0180886 82 381.619838 391.5359069
11 64.39311656 65.51743185 47 234.522406 238.9225242 83 389.8803312 395.9403897
12 70.17580289 71.22539692 48 240.8305192 247.399449 84 390.1339997 395.9528626
13 70.75536576 71.694315 49 241.3085263 247.4007186 85 396.7580769 405.7350508
14 77.43821507 79.16827278 50 242.091938 251.9722965 86 396.783386 405.7417585
15 85.62358216 89.95280767 51 242.4936924 253.9585512 87 405.4299759 417.4274921
16 89.20133569 92.66479784 52 252.6896353 257.3835642 88 409.020823 421.0196083
17 95.02656477 97.67618899 53 254.3713602 257.4891189 89 422.9007962 426.9812301
18 96.44902117 98.9581845 54 258.45965 267.2165568 90 425.5099017 427.4264825
19 97.50939511 98.98841467 55 262.2523481 270.362378 91 425.6809979 434.295792
20 99.15370293 102.1148968 56 262.9019839 271.2576246 92 435.8786896 444.6206086
21 109.8094028 112.7440906 57 276.4727322 282.0671402 93 435.9192729 445.3287181
22 112.6706295 115.940658 58 279.3270569 286.9614486 94 438.0162243 445.3290091
23 125.8637839 128.647868 59 281.7073779 287.0144046 95 442.0953758 454.6858173
24 126.0084139 128.6517412 60 284.1271564 290.2236089 96 449.9029921 454.7270884
25 129.4077703 130.2193886 61 287.835501 294.4411423 97 450.2786574 456.2838516
26 129.4610293 130.4087363 62 301.6031656 306.989597 98 455.431713 465.7654543
27 138.4732345 143.0937626 63 304.0018517 307.2227265 99 463.9179935 480.155258
28 148.8908462 151.4047394 64 307.1623397 311.2775619 100 464.4999312 481.0156905
29 149.3132131 155.4149531 65 308.637254 314.7477734 101 468.8725774 488.2586507
30 157.1294641 162.6916706 66 310.2539585 316.6847591 102 471.7598792 491.8389757
31 159.2280728 165.3935921 67 328.509336 336.1784596 103 478.7708593 494.7920322
32 159.647457 165.4142765 68 328.7797637 336.2277068 104 484.8647328 494.949551
33 166.1106112 168.2997856 69 330.9763129 336.5300454 105 485.0320322 495.6089426
34 166.1907708 168.3155339 70 332.6951225 336.5831701 106 493.2198808 501.7272125
35 173.3430437 178.1220953 71 340.1437751 346.949885 107 493.4054114 503.8197404
36 175.4511857 180.5827508 72 340.2548393 353.4120482 108 499.6245389 514.1288667

Figure 3 displays the ground-state energy of the L-shaped membrane as a function of the
number of grid points and compares it with the precise result of [10]: as already pointed out
the two sets approach the exact value from above and below.

Much more precise results can be obtained by performing an extrapolation of the results
corresponding to finite grids: this is a common procedure used in the literature (see, for
example [2]). I have considered four different extrapolation sets using the numerical results
obtained working with grids with N ranging from N = 10 to N = 60 (only even values).
Calling h = 2L/N the grid spacing the sets are

f1(h) =
N̄∑

n=0

cnh
n, (12)

6
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Figure 2. Left panel: Energy of the ground state of the L-shaped membrane as a function of the
number of grid points N. The horizontal line is the precise result of [10]. The set approaching
the exact result from above (below) corresponds to E

(+)
1 (E

(−)
1 ). Right panel: The asymmetry

An = 2(E
(+)
n − E

(−)
n )/(E

(+)
n + E

(−)
n ) calculated with a grid with N = 60.
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7.5
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E1

Figure 3. Energy of the ground state of the L-shaped membrane as a function of the number of
grid points N. The horizontal line is the precise result of [10]. The set approaching the exact result
from above (below) corresponds to E

(+)
1 (E

(−)
1 ).

f2(h) =
∑N̄/2

n=0 cnh
n

1 +
∑N̄/2

n=1 cnhn
, (13)

f3(h) = c0 +
N̄∑

n=1

cnh
n/3+2/3, (14)

f4(h) = c0 +
∑N̄/2

n=1 cnh
n/3+2/3

1 +
∑N̄/2

n=1 cnhn/3+2/3
, (15)

where N̄ is an even integer which determines the number of coefficients used in the fits.
The continuum limit is reached taking h → ∞, where only the coefficient c0 survives.

The unknown coefficients in expressions (12)–(15) are obtained using a least square approach:

7
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Table 2. Extrapolation of selected eigenvalues of the L-shaped membrane using the four different
sets. The first six states correspond to extrapolating the results for grids going from N = 10 to
N = 60, with 25 unknown coefficients; the last two states correspond to extrapolating the results
for grids going from N = 18 to N = 60, and with 21 unknown coefficients. For a given state,
the set with the asterisk corresponds to the minimal value taken by the least squares. The results
which do not converge to the exact value have been omitted.

n Set 1 Set 2 Set 3 Set 4

1 (−) 9.63959383529194 9.63970774930113 9.63972385784876 9.63972384404696∗

1 (+) 9.63959513453456 9.63971258279395 9.63972384034031 9.63972384401891∗

2 (−) 15.1972518419212 15.1974702475024 15.1972519362081 15.1972519266011∗

2 (+) 15.1972518428845 15.1972519235114 15.1972519387503 15.1972519264561∗

3 (−) 19.7392087861784 19.7392088017282 19.7392073765870 19.7392088020095∗

3 (+) 19.7392088019879 19.7392088021704 19.7392087962239 19.7392088021785∗

4 (−) 29.5178267971821 29.5214811097206 – 29.5214811103487∗

4 (+) 29.5214810813053 29.5214811126514 29.5214794563921 29.5214811141506∗

5 (−) 31.9159767579531 31.9125745966885 − 31.9126359533035∗

5 (+) 31.9123209946513 31.9126005580344 31.9126386707453 31.9126359571263∗

6 (−) 41.474267306813 41.4744740922213 41.4761914432832 41.4745099148779∗

6 (+) 41.4742739974452 41.4744780007070 41.4741677038785 41.4745098904487∗

20 (−) 101.776561675314∗ 101.605333389975 – 99.7713224851033
20 (+) 101.604853531780 101.605223692426 101.673183488214 101.605294080845∗

50 (−) – 246.740564791939 – 246.602432808866∗

50 (+) 250.784799377301 250.785244396338 – 250.785494606618∗

104 (−) – 410.08260648211 – –
104 (+) 493.480067984180∗ 493.480206216096 – 493.488405725447

I show the results of this procedure in table 2. In general, the last set provides the best results
and indeed reproduces the first 11 digits of E1 correctly, using either the values of E

(−)
1 or

those of E
(+)
1 . In the case of E3, for which the exact value is known (E3 = 2π2), I obtain the

first 14 digits correct using E
(+)
3 and the first 11 digits correct using E

(−)
3 .

In [15] Berry has devised an algorithm for obtaining successive approximations to the
geometric properties Kj of a closed boundary B given the lowest N eigenvalues En. The
partition function 	(t) ≡ ∑∞

n=1 e−Ent obeys an asymptotic expansion for small values of t

	(t) ≈ 1

t

∞∑
j=0

Kj t
j/2, (16)

where the coefficients Kj are related to the geometric properties of B. For example, K0 = A/4π

and K1 = −γL/8
√

π . Using this asymptotic expansion, Berry has obtained accelerated
expressions for the geometrical constants of B. In particular, for the area of B he has found the
approximant (equation (20) of [15])

Am(t) = 2πt

m!

∞∑
n=1

e−ξ 2
n ξm−1

n Hm+1(ξn), (17)

where ξn ≡ √
Ent .

In the left panel of figure 4 I show the area approximant A2(t), obtained using the
expression of Berry. The thin lines correspond to using the sets E(+)

n and E(−)
n (solid and

dashed lines, respectively); the thick lines correspond to using the eigenvalues obtained from
the extrapolation of the sets E(+)

n and E(−)
n (solid and dashed lines, respectively). I call Ē(±)

n the
eigenvalues obtained extrapolating the eigenvalues E(±)

n ; the extrapolation is carried out using

8
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Figure 4. Left panel: The area approximant A2(t) obtained using the expression of Berry. The thin
solid and dashed lines are obtained with the first 1000 eigenvalues corresponding to the sets E

(+)
n

and E
(−)
n , respectively. The bold solid and dashed lines correspond to the sets obtained through an

extrapolation from the original sets. Right panel: The perimeter approximant L2(t) obtained with
the improved expression of Berry. The same sets of eigenvalues have been considered.
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Figure 5. First two eigenfunctions of the L-shaped membrane obtained using N = 30. The black
lines correspond to the level ψ(x, y) = 0.

the results obtained with grids with N going from 48 to 60 and assuming En(N) ≈ Ēn+ εn

N
. The

approximants obtained with the extrapolated eigenvalues provide excellent approximations to
the area and perimeter of the membrane, as seen in figure 4.

Figure 5 shows the first two eigenfunctions of the L-shaped membrane obtained with a
grid corresponding to N = 30. The solid lines appearing in the ‘forbidden region’ correspond
to the level ψ(x, y) = 0: the effect observed in the figure is due to the approximation of
working with a finite number of grid points. In fact, although a particular LSF vanishes on
the points defining the grid, except on a particular point, where it reaches its maximum, it is
nonzero elsewhere. This means that the numerical solution can take small values even in the
region where the exact solution must vanish; however, the size of this effect decreases as the
number of grid points is increased (taking into account that the computational load roughly
increases as N4). In the appendix we propose an alternative procedure which does not involve
the diagonalization of larger matrices and which can be used to improve the results obtained
with a given grid.
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Figure 6. Left: energy of the fundamental mode of the Africa-shaped membrane as a function of
the number of grid points. The continuous line is the fit E1 = a + b/N , with a = 20.1705. Right:
energy of the first excited mode of the Africa-shaped membrane as a function of the number of
grid points. The continuous line is the fit E1 = a + b/N , with a = 32.2774.

3. The Africa drum

I will now examine the case of a membrane with an irregular shape. The application of the
method proceeds exactly as in the case of the L-shaped membrane: once a grid is chosen, the
points of the grid which are internal to the membrane are used to build a matrix representation
of the Hamiltonian which, once diagonalized, provides the energies and wavefunctions of the
problem.

As a paradigm of this class of membranes, I have studied the vibrations of a drum with
the shape of Africa1. Unlike in the previous example the border does not cross the grid points,
a feature which affects the precision of the results. The plots in figure 6 display the energies
of the first two states of the Africa drum for grids with different N (the dots in the plots) and
compare them with the best fit obtained assuming that E(N) = a + b/N , where a and b are
constants independent of N. The irregularity of the border is reflected in the behaviour of the
eigenvalues which decay with N but at the same time oscillate.

In figure 7, I show the density plot of four different states of the Africa drum, obtained
using a grid with N = 60. In figure 8, I show the wavefunction of the ground state of the
Africa drum, obtained using a grid with N = 60.

4. Isospectral membranes

In a classic paper dated 1966 [16], Kac formulated an interesting question: whether it is
possible to hear the shape of a drum, meaning if the spectrum of frequencies of a given
drum is unique to that drum or drums with different shapes can have the same spectrum.
The question was finally answered in 1992, when Gordon, Webb and Wolpert found a first
example of inequivalent drums having the same spectrum [17]. An experiment made by
Sridhar and Kudrolli reported in [18] used microwave cavities with the shape of the drums
of [17] to verify the equality of the spectrum for the lowest 54 states. More recently, the
same experiments have been carried out on isospectral cavities where the classical dynamics
changes from pseudo-integrable to chaotic [19]. Numerical calculations of the first few modes

1 As a technical remark, the shape of Africa—or of arbitrary membranes—is obtained in the Mathematica code by
reading a digital image and then by generating a function inside a unit square, whose values at a given point are 0 and
1 depending if the point falls inside or outside the membrane.
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Figure 7. Density plot for the fundamental state (upper left), first excited state (upper right), 200th
excited state (lower left) and 300th excited state (lower right) of the Africa-shaped membrane. In
all plots the absolute value of the wavefunction is shown and a grid with N = 60 is used.

of the isospectral drums found in [17] have been performed with different techniques: Wu,
Sprung and Martorell [20] have used a mode matching method to calculate the first 25 states
of these drums and compared the results with those obtained with finite difference; using a
different approach, Driscoll [21] has also calculated the first 25 states obtaining results which
are accurate to 12 digits; Betcke and Trefethen [10] have used their modified version of the
method of particular solutions to obtain the first three eigenvalues of these drums, reporting
results which are slightly more precise than those of Driscoll.

I will now discuss the application of the present method to the calculation of the spectrum
of these isospectral membranes: whereas in the case of the L-shaped membrane the border of
the membrane was sampled by the grid, regardless of the grid size (keeping N even), in the
case of the isospectral membranes this happens only for grids where N = 6k, with k an integer.
It is important to restrict the calculation to this class of grids to avoid the oscillations observed

11
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Figure 8. Ground state of the Africa-shaped membrane obtained using N = 60.

in the case of the Africa membrane. I have thus applied the method with grids ranging from
N = 6 to N = 120.2

The plot in figure 9 displays the ground-state energy of the first isospectral membrane
calculated at different grid sizes. The horizontal line is the precise value given in [10]. The
set approaching this value from above (below) corresponds to the application of the method
rejecting (accepting) the grid points falling on the border. The corresponding plot for the
second isospectral membrane is almost identical and therefore it is not presented here.

In table 3, I report the energies of the first 30 states obtained using Richardson extrapolation
[22] on the results for grids going from N = 66 to N = 120. The second and third columns
are the energies of the first isospectral membranes obtained with the sets which reject

(
E(+)

n

)
or accept

(
E(−)

n

)
the grid points falling on the border, which as seen in the case of the L-shaped

membrane provide a sequence of numerical values approaching the exact eigenvalue from
above and from below, respectively. The last two columns report the analogous results for the
second isospectral membrane. Note that some of the energies in the third column are clearly
incorrect.

A further empirical verification of the isospectrality of the two membranes is presented in
figure 10, where I have plotted the asymmetry An ≡ (

E(1+)
n − E(2+)

n

)/(
E(1+)

n + E(2+)
n

)
for the

first 2000 states of the isospectral membranes. In this case E(1+)
n

(
E(2+)

n

)
is the energy of the

nth state of the first (second) membrane obtained using Richardson extrapolation of the grids
with N = 114 and N = 120. Figure 11 displays the wavefunctions of the ground state and
100th state of the two isospectral membranes.

2 The numerical results presented in the case of the L-shaped membrane were obtained with a 40-digit precision in
the eigenvalues, using the command N[, 40] of Mathematica: in this case, since I need to resort to larger grids I have
worked with less digits precision using the command N [] in Mathematica.
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Figure 9. Energy of the ground state of the first isospectral membrane as a function of the number
of grid points N. The horizontal line is the precise result of [10]. The set approaching the exact
result from above (below) corresponds to E
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1 ).
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Figure 10. Left panel: log10 of the asymmetry An ≡ (E
(1+)
n − E

(2+)
n )/(E

(1+)
n + E

(2+)
n ) for the

first 2000 states of the isospectral membranes. E
(1+)
n (E

(2+)
n ) is the energy of the nth state of the

first (second) membrane obtained using Richardson extrapolation of the grids with N = 114 and
N = 120. Right panel: Blow-up of the previous plot for the first 100 states.

5. An unusual drum

I will now consider a further example by looking at a particular membrane originally studied
by Trott [23]: this drum is shown in figure 12 and consists of a total of 308 units squares
which are joined into a rather irregular form. Theoretical and experimental studies carried
out on drums with fractal or irregular boundaries have shown that the wave excitations for
these drums are drastically altered [24–26]: in particular, the Weyl law for these membranes is
modified in a way which depends on the fractal dimension of the perimeter (see, for example
[27]), the so-called Weyl–Berry–Lapidus conjecture. Recently, the vibrations of a uniform
membrane contained in a Koch snowflake have been studied in two papers [28, 29].

The paper by Trott is both interesting in its physical and mathematical content and as an
example of the excellent capabilities of Mathematica to handle heavy numerical calculations:
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Table 3. First 30 eigenvalues of the isospectral membranes obtained with Richardson extrapolation
of the results obtained with grids from N = 66 to N = 120.

n E
(1+)
n E

(1−)
n E

(2+)
n E

(2−)
n

1 2.537938184 2.537859157 2.537930157 2.537924672
2 3.655477379 3.655457482 3.655439267 3.655436933
3 5.175456364 5.175515223 5.1754891 5.175450085
4 6.53758046 6.537493542 6.537561774 6.537528448
5 7.247973684 7.248012453 7.247966062 7.248007219
6 9.209282216 9.209252596 9.20928929 9.209222008
7 10.59698943 10.59697476 10.59692509 10.59694683
8 11.54137149 11.54137651 11.54137016 11.54142735
9 12.33702671 12.33696554 12.33700655 12.33698898

10 13.05355072 13.0535318 13.05351736 13.05354013
11 14.31383084 14.31387457 14.31384362 14.31380888
12 15.87113023 15.87110476 15.87106608 15.8711794
13 16.94182893 -25414.06158 16.94177705 16.94177218
14 17.66507424 25448.66845 17.66503368 17.6650544
15 18.98079211 18.98079864 18.98083269 18.98081294
16 20.88240176 16.71191189 20.88233985 20.88246688
17 21.24773575 25.41816076 21.24772537 21.24764682
18 22.23265755 22.2326039 22.23265897 22.23262895
19 23.71129295 23.71135125 23.71127276 23.71130372
20 24.47925064 24.48080219 24.47920658 24.47934876
21 24.67406118 24.67245947 24.67401531 24.67403958
22 26.08011208 26.08090828 26.08008881 26.08012901
23 27.30391033 27.30298845 27.30390863 27.3039225
24 28.17508031 28.17506497 28.17506143 28.17505957
25 29.56976983 29.56970152 29.56975041 29.56905778
26 31.48308074 31.51241562 31.48304984 31.48393448
27 32.07624358 32.16454642 32.07622156 32.08008665
28 32.21611001 37.0118719 32.21605287 32.21393591
29 32.90535338 27.9888228 32.90537696 32.90354978
30 34.13633502 34.13929552 34.13632946 34.13632752

as a matter of fact Trott uses a finite difference approximation of the Laplacian on a uniform
grid and samples the membrane in 28 521 internal points. Explicit numerical values for the
first 24 modes are reported.

I have therefore considered the same problem using the LSF with grids of different size
(up to N = 250 which leads to the same grid of [23]). Figure 13 displays the energy of
the fundamental mode of this membrane as a function of the size of N. The dashed horizontal
line in the plot represents the result of [23], E1 = 6.647 05: the points on the upper
part of the plot correspond to N going from 50 to 250, with intervals of 50. For these
particular values of N, the border of the membrane is sampled by the grid and therefore more
accurate results are expected. The grid points on the border are rejected, which leads to
eigenvalues which approach the exact results from above, as seen in the previous examples.
The points in the lower part of the plot correspond to grid sizes varying from N = 52 to
N = 148, excluding N = 100: in this case, the values approach the exact result from below,
although in doing so they also oscillate reflecting the treatment of the border (a behaviour
already observed in the case of the Africa membrane). As mentioned above, the finest grid
corresponds to sampling the membrane on 28521 internal points and therefore to working with a
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Figure 11. Upper panel: Wavefunctions (absolute value) of the first isospectral membrane (ground
state and 100th excited state). Lower panel: Wavefunctions (absolute value) of the second
isospectral membrane (ground state and 100th excited state). A grid with N = 60 is used.

28521 × 28521 square matrix. Given that the matrix obtained with the LSF is a sparse
symmetrix matrix, it is possible to deal efficiently with it in Mathematica, applying the
Arnoldi method to extract a limited sequence of eigenvalues/eigenvectors. The reader will
note that in this example I have not considered the set corresponding to accepting the grid
points falling on the border, as was done in the case of the L-shaped and of the isospectral
membranes: although this set provides a sequence of values which uniformly approach the
value at the continuum, the number of grid points sampled is quite large because of the large
perimeter of the membrane. For example, for N = 100, this set samples the membrane on
7029 points, compared with the N = 3801 points used in the other set.

The figure also displays the improved ground-state energies obtained using the ‘mesh
refinement’ procedure described in the appendix (the three green points): the eigenvector for
a given grid is extrapolated to a finer grid rejecting contributions in the ‘forbidden region’
(i.e. falling outside the border of the membrane). The improved energy estimate corresponds
to the expectation value of the Hamiltonian in this state and thus requires no diagonalization.
The results displayed in the figure correspond to extrapolation to a grid which is twice finer.
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Figure 12. The unusual drum considered by Trott [23]. The black area is the surface of the drum;
the red points are the collocation points corresponding to N = 50.
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Figure 13. Energy of the ground state of the unusual drum as a function of N. The horizontal
line is the result of [23]; the points approaching the horizontal line from above correspond to
configurations where the border is sampled by the collocation points (and as discussed in the case
of the L-shaped membrane are rejected). The green points correspond to the results obtained with
the ‘mesh refinement’ procedure described in the appendix.

6. Bound states in the continuum

It is well known that the spectrum of the Laplacian with Dirichlet boundary conditions may
contain bound states even for open geometries, in correspondence of crossings or bendings of
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the domain. For example, Schult et al [30] have studied the problem of two crossed wires,
of infinite length, showing that such a geometry supports exactly one bound state, localized
at the crossing. Avishai and collaborators have also proved the existence of a bound state in
the broken strip configuration for arbitrarily small angles, see [31] (more recently, Levin has
proved the existence of one bound state in the broken strip for any angle of the strip [32]).
Goldstone and Jaffe [33] have given a variational proof of the existence of a bound state for
an infinite tube in two and three dimensions, provided that the tube is not straight. Other
interesting configurations which support bound states in the continuum have been studied by
Trefethen and Betcke [11].

The example which I will consider here is somehow related to the crossed wires
configuration studied by Schult et al. I have considered a set of horizontal and vertical
wires, of negligible transverse dimension, which are contained in a square box of size 2.
Calling n̄ the number of wires in each dimension, n̄2 is the number of crossings between these
wires (for simplicity the wires are assumed to be equally spaced). This configuration can be
easily studied in the present collocation approach, by sampling the wires on a grid and by
then diagonalizing the Hamiltonian obtained following this procedure. The resulting energies
calculated in this way will clearly depend on the spacing of the collocation grid, h, and diverge
as h is sent to zero. To obtain finite results one need to multiply these eigenvalues by h2, which
eliminates the divergence caused by the shrinking of the transverse dimension. Following this
procedure I have studied different configurations, corresponding to choosing different value
of n̄ (going from n̄ = 1 to n̄ = 4) and I have found that a given configuration has precisely
the same number of bound states as the number of crossings. These bound states happen
to be almost exactly degenerate and correspond to wavefunctions which are localized on the
vertices.

In table 4, I report the energy (multiplied by h2) of the bound states and of the first
unbound state (Egap) for the different configurations. These results have been obtained using
a fine grid corresponding to h = 1/300 and show that the bound states are precisely n̄2 as
anticipated and they are essentially degenerate; the energy of the bound states and of the gap
are also found to be almost insensitive to n̄, which can be interpreted as a sign of confinement
of a state to the crossings. I have also checked the dependence of these results upon N (or
equivalently upon h) observing that the energies can be fitted excellently as E = a + b/N2;
for example, in the case of the ground state of the configuration with n̄ = 4, I have obtained
E = 2.59874 − 44.6364/N2.

In figure 14, I have plotted the wavefunction of the ground state of the configuration
corresponding to n̄ = 4 using a grid with N = 500. The wavefunction is clearly localized at
the crossings between the wires. Similar behaviour is observed for the remaining 15 bound
states.

7. Collocation with conformal mapping

The examples considered in the previous sections show that it is possible to obtain the spectrum
of the negative Laplacian over regions of arbitrary shape by using a collocation scheme,
where the boundary conditions need not to be explicitly enforced on the border. Clearly,
the precision of this approach should improve if the boundary conditions would be enforced
exactly on the border of the membrane. One way of achieving this result is by mapping
conformally the shape of the membrane into a square (or a rectangle), on whose border the
LSF obey Dirichlet boundary conditions. I will discuss explicitly two examples of how this is
done.
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Figure 14. Wavefunction of the ground state of the configuration for n̄ = 4 using N = 500.

Table 4. Energies of the bound states for configurations with different number of crossings, using
N = 600, corresponding to a spacing h = 1/300.

n̄ 1 2 3 4

h2E1 2.59873 2.59871 2.59867 2.59862
h2E2 – 2.59873 2.59869 2.59864
h2E3 – 2.59873 2.59869 2.59864
h2E4 – 2.59876 2.59872 2.59867
h2E5 – – 2.59873 2.59868
h2E6 – – 2.59873 2.59868
h2E7 – – 2.59876 2.59871
h2E8 – – 2.59876 2.59871
h2E9 – – 2.59880 2.59874
h2E10 – – – 2.59874
h2E11 – – – 2.59875
h2E12 – – – 2.59877
h2E13 – – – 2.59877
h2E14 – – – 2.59881
h2E15 – – – 2.59881
h2E16 – – – 2.59887
h2Egap 3.28997 3.29006 3.29019 3.29035

7.1. Circular membrane

As a first example I consider a circular homogeneous membrane, which is exactly solvable
(see, for example [1]) and therefore it can be a useful tool to test the precision of the present
method.

The function

f (z) = e− 3iπ
4 sn

(
zF

(
sin−1

(
e− iπ

4
)∣∣ − 1

)| − 1
)

(18)

maps the unit square in the w complex plane into the unit circle in the complex z plane, as
seen in figure 15. Here, sn(a|b) is the Jacobi elliptic function sn and F(a|b) is the incomplete
elliptic function of first kind.
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Figure 15. Unit square in the z plane and the corresponding unit circle in the w plane reached
through transformation (18).

Under this mapping the original equation,

−�ψ(w) = λψ(w) (19)

with Dirichlet boundary conditions on the unit circle, is mapped to

−�χ(z) = λσ(z)χ(z) (20)

with Dirichlet boundary conditions on the unit square. Here, σ(z) ≡ ∣∣ dw
dz

∣∣2
and equation (20)

describes the vibrations of a non-uniform square membrane. Although in the previous sections
I have restricted the application of the method to the case of uniform membranes of arbitrary
shapes, the method can be applied also to inhomogeneous membranes straightforwardly. Let
me briefly mention how this is done. As a first step, equation (20) may be written in the
equivalent form

− 1

σ(z)
�χ(z) = λχ(z). (21)

The operator Ô ≡ 1
σ(z)

� is evaluated on a uniform grid in the z-plane using the little sinc
functions (LSF). The action of the operator over a product of sinc functions can be calculated
very easily, as explained in the previous sections. To make the discussion simpler, I restrict to
the equivalent one-dimensional operator and make it act over a single LSF:

− 1

σ(x)

d2

dx2
sk(h,N, x) = −

∑
j l

1

σ(xj )
c
(2)
kl sj (h,N, x)sl(h,N, x)

≈ −
∑

j

1

σ(xj )
c
(2)
kj sj (h,N, x). (22)

The matrix representation of the operator over the grid may now be read explicitly from
the expression above. The reader should note that the matrix will not be symmetric unless the
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Figure 16. Density of the inhomogeneous square membrane isospectral to the homogeneous
circular membrane.

density is constant3. Figure 16 displays the density of the inhomogeneous square membrane
which is isospectral to the homogeneous circular membrane.

Using this approach I have considered grids with N = 10, 20, . . . , 80 and I have calculated
the first four even–even eigenvalues, which are shown in table 5. Taking into account the
symmetry of problem I have used symmetrized LSF, which obey mixed boundary conditions
(Dirichlet at one end and Neumann at the other end): in this way, for a given value of N a
grid of (N/2)2 points is used. As mentioned before the exact eigenvalues for this problem are
known (the zeros of the Bessel functions): these are reported in the last row.

In figure 17, I have plotted the lowest eigenvalue of the circular membrane corresponding
to different N and I have fitted these points using functions like c0 + c1/N

r , with r = 3, 4, 5
(the dashed, solid and dotted lines, respectively, in the plot). This plot shows that the leading
(non-constant) behaviour of the numerical energy for N � 1 is 1/N4.

Taking into account this behaviour, I have considered the quantity

�Q ≡
8∑

k=1

[
α1 −

Q∑
n=2

αn

(10k)n+2

]2

, (23)

where Q = 8 and I have obtained the coefficients αn by minimizing �Q (note that this
expression takes into account the leading 1/N4 behaviour just discussed). The row marked as
LSQ8 displays the quite precise results obtained following this procedure.

3 In general, the calculation of the eigenvalues and eigenvectors of non-symmetric matrices is computationally more
demanding than for symmetric matrices of equal dimension.
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Figure 17. Energy of the ground state of the circular membrane. The dashed, solid and dotted
lines correspond to fits using functions like c0 + c1/N

r , with r = 3, 4, 5, respectively.

Table 5. Even–even spectrum of the circular membrane: first four eigenvalues.

N E1 E2 E3 E4

10 5.785633618 26.46056162 30.55061880 57.88187288
20 5.783347847 26.37986506 30.47598468 57.60026669
30 5.783218252 26.37564237 30.47217988 57.58626207
40 5.783196213 26.37493961 30.47155075 57.58397911
50 5.783190167 26.37474851 30.47138009 57.58336363
60 5.783187992 26.37468004 30.47131902 57.58314408
70 5.783187059 26.37465074 30.47129291 57.58305035
80 5.783186606 26.37463653 30.47128023 57.58300497
LSQ8 5.783185971 26.37461646 30.47126209 57.58294087
Exact 5.783185962 26.37461642 30.47126234 57.58294090

I would like to discuss briefly a different issue. In [34], Gottlieb has used the Moebius
transformation

fg(z) = (z − a)/(1 − az) (24)

to map the unit circle onto itself. This mapping transforms the homogeneous Helmholtz
equation for a circular membrane into the inhomogeneous Helmholtz equation for a circular
membrane with density

ρ(x, y) = |f ′
g(z)|2 = ρ0

(1 − a)2

[(1 − ax)2 + a2y2]2
. (25)

Gottlieb uses this result to conclude that membranes corresponding to different densities,
i.e. different values of a, are isospectral, thus providing a negative answer to the famous
question ‘Can one hear the shape of a drum?’, posed by Kac [16]. I wish to move our
discussion on computational grounds: for a given a the mapping of equation (24) deforms the
grid inside the unit circle; as a is changed, the grid points move, as shown in figure 18. The
case a = 0 is plotted in the right panel of figure 15. Clearly, if the density of the membrane
is constant, or symmetric with respect to the centre, one expects that a = 0 provide the best
grid. In figure 19, I have plotted the logarithm of the difference between the approximate
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Figure 18. Grid obtained with the Moebius map corresponding to a = 0.5 (left) and a = −0.8
(right).
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Figure 19. � ≡ Log10(EN − Eexact) using three values of a (a = 0, 0.4 and 0.8 from bottom to
top).

and exact energy for the ground state of a circular membrane, � ≡ Log10(EN − Eexact),
using three values of a (a = 0, 0.4 and 0.8). These numerical results confirm the prediction
made: stated in different terms one can conclude that for a given problem one can improve
the numerical accuracy of a calculation by selecting an optimal grid among those obtained
through a conformal map of the region onto itself. The optimization of the parameter a
depending on the specific problem considered is in the same spirit of the variational approach
used in [13, 14, 35] and could provide a useful computational tool to boost the precision of
the results.

7.2. Circular waveguide

The second example of the application of conformal mapping to the solution of the Helmholtz
equation is taken from the paper of Kuttler and Sigillito [2] (this problem was also studied
earlier by Moler, in [101] of [2]).
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Figure 20. Square in the z plane and corresponding region in the w plane, reached through the
conformal map w = tan z
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Figure 21. Energy of the ground state of the circular waveguide. The dashed, solid and dotted
lines correspond to fits using functions like c0 + c1/N

r , with r = 3, 4, 5, respectively.

In figure 20, two regions of the plane are displayed: the left plot corresponds to a square
of side π centred on the origin in the z = x + iy plane; the right plot corresponds to a circular
waveguide with circular ridges in the w = u + iv plane. The function w = tan z

2 maps the first
region into the second one.

As I have shown for the case of the circular membrane, the homogeneous Helmholtz
equation over the second region may be transformed into an inhomogeneous Helmholtz
equation over the square:

−�U(z) = λσ(z)U(z). (26)
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Figure 22. Upper panel: Even–even wavefunctions (absolute value): ground state and 100th
excited state of the circular waveguide. Lower panel: Even–even wavefunctions (absolute value):
200th and 300th excited states of the circular waveguide. A grid with N = 80 is used.

In the present case σ(z) ≡ ∣∣ dw
dz

∣∣2 = (cos x + cosh y)2, and Dirichlet boundary conditions are
assumed on the borders of the two regions.

In tables 1–3 of their paper, Kuttler and Sigillito report different estimates for the first
12 even–even eigenvalues, obtained using different approaches. In table 2 they also apply
Richardson extrapolation to the eigenvalues obtained with finite difference. In the case of the
ground state of this membrane they also mention the precise value obtained by Moler using
the method of point matching

λ1 = 7.5695769, (27)

In table 6, I report the even–even eigenvalues of equation (26) obtained using collocation
with different values of N. The results corresponding to the ground state are plotted in
figure 21 and fitted using functions like c0 + c1/N

r , with r = 3, 4, 5 (the dashed, solid
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Table 6. Even–even eigenvalues of the problem of equation (26) using collocation with the little
sinc functions (LSF).

N E1 E2 E3 E4

10 7.575738906 29.35369905 44.93667650 68.99532514
20 7.569970385 29.12882337 44.84592568 67.91298030
30 7.569654735 29.11799633 44.84124500 67.86357065
40 7.569601533 29.11623444 44.84047707 67.85592485
50 7.569586991 29.11575957 44.84026961 67.85390710
60 7.569581767 29.11559019 44.84019553 67.85319500
70 7.569579528 29.11551787 44.84016389 67.85289283
80 7.569578441 29.11548286 44.84014857 67.85274711
LSQ8 7.569576902 29.11543343 44.84012692 67.85254236
LSQ7 7.569576902 29.11543343 44.84012692 67.85254236

N E5 E6 E7 E8

10 76.36327173 105.8649443 127.5818229 147.6128111
20 74.57343676 104.7105731 123.4501146 137.5136748
30 74.51254455 104.6448241 123.2916952 137.1508752
40 74.50340797 104.6345417 123.2690972 137.1033030
50 74.50101871 104.6318226 123.2633192 137.0914797
60 74.50017885 104.6308625 123.2613110 137.0874237
70 74.49982321 104.6304550 123.2604661 137.0857295
80 74.49965192 104.6302584 123.2600608 137.0849203
LSQ8 74.49941161 104.6299823 123.2594952 137.0837970
LSQ7 74.49941160 104.6299823 123.2594952 137.0837959

N E9 E10 E11 E12

10 152.6380731 175.0500571 202.7827432 229.6150278
20 147.1852075 177.5293898 193.4167694 213.4362048
30 147.1167888 177.2332164 193.0075863 212.8440230
40 147.1064916 177.1901085 192.9541314 212.7718374
50 147.1038082 177.1790645 192.9409198 212.7546507
60 147.1028673 177.1752263 192.9364009 212.7488774
70 147.1024696 177.1736121 192.9345164 212.7464938
80 147.1022783 177.1728379 192.9336173 212.7453635
LSQ8 147.1020103 177.1717582 192.9323707 212.7438068
LSQ7 147.1020110 177.1717573 192.9323707 212.7438134

and dotted lines, respectively, in the plot). This plot proves that the leading (non-constant)
behaviour of the numerical energy for N � 1 is 1/N4, as for the circular membrane.

The results in the table have also been extrapolated using a least square approach

�Q ≡
8∑

k=1

[
α1 −

Q∑
n=2

αn

(10k)n+2

]2

, (28)

where Q = 7, 8 and αn are coefficients which are obtained by minimizing �Q. Note that this
expression takes into account the leading 1/N4 behaviour just discussed. The rows marked
as LSQ7,8 display the results obtained following this procedure (the comparison between the
results for Q = 7 and Q = 8 gives an indication over the precision reached): in particular,
the energy of the ground state reproduces all the digits of the result obtained by Moler. It is
also remarkable that the energies obtained with the conformal-collocation method decrease
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monotonically when the number of collocation points is increased (the only exception is
represented by the E10 for N = 10, probably due to the limited number of collocation points).

As a technical remark, one should note that the results corresponding to a given value of
N are obtained using a set of N/2 symmetric (even) functions for each direction, thus reducing
the computation load by a factor of 4. The results displayed in this table should be compared
with the analogous results of table 2 of [2], which were obtained using finite difference. Four
different wavefunctions of the circular waveguide, corresponding to the ground, 100th, 200th
and 300th even–even excited states are shown in figure 22.

8. Conclusions

In this paper, I have used a collocation method based on LSF to obtain the numerical solutions
of the Helmholtz equation over two-dimensional regions of arbitrary shape. A large number
of examples have been studied, illustrating the great potentialities of the present method.
Among the principal virtues of this method I would like to mention its generality (it can
be applied to membranes of arbitrary shapes, including inhomogeneous membranes, and to
the Schrödinger equation—although I have not done this in the present paper), its simplicity
(the matrix representation of the Helmholtz operator is obtained directly by collocation, and
therefore it does not require the calculation of integrals) and the possibility of combining it
with a conformal mapping, as done in the last section. In this last case, a rapid convergence
to the exact eigenvalues is observed as the number of grid points is increased. In the case
where the border is not treated exactly, it has also been observed that the method provides
monotonous sequences of approximations to the exact eigenvalue either from above or from
below. Readers interested to looking at more examples of application of this method may find
useful to check the gallery of images which can be found at http://fejer.ucol.mx/paolo/drum.

Appendix. Mesh refinement

Although the collocation method described in this paper allows one to obtain precise solutions
to the Helmholtz equation over domains of arbitrary shape, in general the Dirichlet boundary
conditions are not enforced exactly over all the boundary. As discussed in section 7, the
best approach consists of introducing a conformal map, which allows one to go from the
original problem to an inhomogeneous Helmholtz problem over a square: in such a case,
the Dirichlet boundary conditions are imposed exactly and rapid convergence to the exact
solutions is observed. In general, however, finding such a conformal map can be a difficult
task and therefore the first approach may be more appealing. I will discuss here a simple
procedure to ‘refine’ the results obtained by direct collocation of the Helmholtz equation over
the grid. The fundamental observation is that the LSF that we have used do vanish on the
grid points on the border and external to the membrane, but they are nonzero in all the other
points external to the membrane. Therefore, the cumulative effects of the LSF internal to
the membrane can be seen also outside the membrane, although it will tend to disappear as
the number of grid points is increased. This solution, to increase the number of grid points,
may be the most obvious but is certainly not appealing computationally, since increasing the
number of grid points strongly increases the computational cost (remember that the number
of matrix elements grows as N4). However, we can use much simpler procedure, which does
not require any additional diagonalization. Call N the parameter defining the size of the grid:
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a point in this grid is described by the direct product of the LSF in the x and y directions. In
the Dirac notation, we write

〈x, y|k, k′〉h ≈ sk(h, x)sk′(h, y), (A.1)

assuming for simplicity that the grid has the same spacing in both directions. Let us now
concentrate on one of the LSF, say the one in the x direction: we take a finer grid, with
a spacing h′ = h/l, where l is an integer. The new grid contains now (lN − 1) points,
including obviously the original grid points. However, it is clear that the original LSF can be
decomposed in the new grid as

sk(h, x) =
lN/2−1∑

j=−lN/2+1

sk(h, x̄j )sj (h/l, x), (A.2)

where x̄j = 2Lj/(lN) are the new grid points. Note that this relation is exact.
The wavefunction of the nth state obtained from the diagonalization of the (N−1)×(N−1)

Hamiltonian reads

ψn(x, y) = 1

h

∑
K

v
(n)
K sk(K)(h, x)sk′(K)(h, y)

= 1

h

∑
K

v
(n)
K

lN/2−1∑
j=−lN/2+1

sk(K)(h, x̄j )sj (h/l, x)

lN/2−1∑
j ′=−lN/2+1

sk′(K)(h, ȳj ′)sj ′(h/l, y),

where v(n) is the nth eigenvector. Clearly, ψn(x, y) differs from 0 even in points of the refined
grid which fall outside the membrane profile. We introduce a new matrix whose elements are
given by

ηjj ′ =
{

0 if (x̄j , ȳj ′) /∈ B
1 if (x̄j , ȳj ′) ∈ B (A.3)

and rewrite the wavefunction ‘purged’ on the refined grid as

ψ̄n(x, y) = N
h

lN/2−1∑
j=−lN/2+1

lN/2−1∑
j ′=−lN/2+1

Ṽjj ′sj (h/l, x)sj ′(h/l, y),

where

Ṽjj ′ ≡ ηjj ′
∑
K

v
(n)
K sk(K)(h, x̄j )sk′(K)(h, ȳj ′) (A.4)

and N is a normalization constant that ensures that∫
B

ψ2
n(x, y) dx dy = 1. (A.5)

It is easy to show that

N = l√∑
jj ′ Ṽ

2
jj ′

. (A.6)

To simplify the notation, I define

Vjj ′ ≡ N
l

Ṽjj ′ (A.7)

and thus write

ψ̄n(x, y) = l

h

lN/2−1∑
j=−lN/2+1

lN/2−1∑
j ′=−lN/2+1

Vjj ′sj (h/l, x)sj ′(h/l, y).

27



J. Phys. A: Math. Theor. 41 (2008) 265206 P Amore

On the other hand, we may also calculate the expectation value of the Hamiltonian in this
state

〈Ĥ 〉n = −
∫
B

ψ̄n(x, y)�ψ̄n(x, y) dx dy

= −
∑

jj ′rr ′ss ′

Vjj ′Vrr ′

h2

[
c̄(2)
rs δr ′s ′ + c̄

(2)
r ′s ′δrs

] ∫
B

sj (h/l, x)sj ′(h/l, y)ss(h/l, x)ss ′(h/l, y)

= −
∑
jj ′rr ′

Vjj ′Vrr ′
[
c̄
(2)
rj δr ′j ′ + c̄

(2)
r ′j ′δrj

]
= −

∑
jj ′r

c̄
(2)
rj [Vjj ′Vrj ′ + Vj ′jVj ′r ], (A.8)

where c̄(2) is the matrix for the second derivative on the refined grid. An example of application
of this procedure is shown in figure 13.
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